

ESxSNMP: ESnet eXtensible SNMP System

Jon Dugan < jdugan@es.net >

Summer JointTechs 2010, Columbus, OH

ESnet Statistics Overview

Why another SNMP collection system?

Desire to retain raw, unmolested data

- Disk is cheap
- At least one application in ESnet needs raw data
- Aids in troubleshooting of erroneous statistics

Automatically detect changes in the network

- New interfaces are detected within minutes (tunable)
- Dynamic circuits make this especially important

Metadata

Efficiently maintain a history of the network

Integration with other systems

perfSONAR, web sites (REST/JSON)

Principles

Automate

- routers are added/removed automatically
- interfaces are added/removed automatically
- monthly reports are generated automatically

Don't make (too many) assumptions

- keep raw data
- keep history
- polling does minimal processing/ interpretation

Be flexible

- work in the general case, allow for exception cases
- group of cooperating processes, components can be replaced
- clear entry points for modifying behavior

Share

- REST/JSON
- perfSONAR (coming soon)

Implementation

Python

- About 4,000 SLOC
- Dependencies
 - TSDB
 - SQLAlchemy
 - web.py
 - DLNetSNMP: wrapper for net-snmp

Multiple Process Architecture

Flexibility / Reduced Coupling

- Components can be replaced individually
- One part can be upgraded without restarting everything
- Each piece is simple and focused (cf. Unix tools approach)

Concurrency

- Process level concurrency
- "Do not communicate by sharing memory; instead share memory by communicating." (Go language)
- Python threads are lacking
 - Excellent for I/O bound applications
 - Poor performance for compute intensive applications

ESxSNMP Architecture

Devices, OIDs and OIDSets (Oh my!)

Device

- Referred to by DNS name
- Properties: SNMP community, begin time, end time

OID

Referred to by shortest unique name, eg ifHCInOctets

OIDSet

- Collection of OIDs that are polled as a group
 - FastPollHC: ifHCInOctets, ifHCOutOctets
 - ifRefPoll: ifDescr, ifAlias, ifSpeed, ifHighSpeed, ifIndex, ipAdEntIfIndex

Polling: espolld

Multithreaded process

- thread per OIDSet per Device
- Thread to gather results and ship them to work queue
- (It's I/O bound so Python threads are happy)

Polling method

- Call correlator setup function (might do get some additional info)
- For oid in oidset: get entire table (BULKWALK)
- Correlate results
- Hand off to thread which will place them in the work queue

Correlators

Provide a mapping between raw data and something useful

Examples:

- IfDescrCorrelator
 - translates ifIndex to ifDescr (interface name)
 - ifHCInOctets.116 becomes ifHCInOctets/ge-1_0_0
- JnxFirewallCorrelator
 - jnxFWCounterByteCount."test-from-eqx"."from-eqx".counter becomes counter/test-from-eqx/from-eqx

Work Queue

Advantages

- Decouple polling from saving to disk (persisting)
- Distribute the load
- Send to multiple work queues (if there are multiple consumers)
- Use all cores without thrashing

Implementation

- Currently memcached and custom code
- Work objects represented as JSON strings
 - Anything that can do JSON and talk to memcached can enqueue work (Perl, Ruby, C/C++, etc, etc)
- AMPQ is a possible future alternative

Metrics Storage: espersistd

Manager process

Starts/stops/restarts worker processes

Worker processes

- Simple ones have single instance
- Compute and I/O bound tasks have many worker processes
 - In this case n workers are started
 - Queuing process hashes them into a worker specific queue
 - (Sevice, OIDSet) tuple hashed to same worker queue each time

Lookup table maps OIDSet to a class that handles the persisting

TSDB: Time Series Database

Custom data store, similar to RRD without the round robin

- Never discards raw data
- Generates aggregates

Basic Types

- TSDB
 - Container for TSDBSets and TSDBVars.
 - Implements a simple multilevel file store
- TSDBSet
 - It's a directory/folder
 - Container to hold TSDBVars or TSDBSets
- TSDBVar
 - Contains actual data
 - Stored in chunks (usually one day of data)
 - Each var is made up of rows which are indexed by timestamp

TSDB Aggregates

Average / Minimum / Maxium per time interval

Stackable time periods

- Aggregates can be used to generate larger time period aggregates
 - eg. 30 second, 5 minute, 1 hour, 24 hour, 1 week

Aggregate calculation is very similar to RRD

- Test suite includes comparison tests with RRD
- Within 2% to pass (floating point can be a harsh mistress)

Metrics Retrieval: esdbd

Allow easy, consistent access to data

- Data will be used in unanticipated ways
- Language neutral

Technical details

- RESTful interface
- URL hierarchy: eg, core-rtr-1/interface/xe-0_0_0/in
- HTTP transport using HTTP semantics
- Data returned in JSON format
- Uses web.py framework

perfSONAR Support

Current

- Added a new database type to the perfSONAR-PS SNMP MA
- Uses the esdbd REST interface
- In production for at least a year

Future

- esdb will be a perfSONAR-MA
- Some initial exploration done already
- Initial Python perfSONAR library developed by Dan Gunter and Monte Goode at LBL

Graphite visualization with Net Almanac annotation

Monthly Stats

Network Weathermap

Supercomputing 2009 and 2010

Primary SNMP data collection system

Source for perfSONAR

Used to judge the bandwidth challenge (2009)

Store and display energy utilization data (2009)

Upcoming Features (Vaporware)

Link upgrade prediction

- Statistical analysis
- Very interested in other people's experiences
- Summer student has initial implementation

Better Caching and I/O Scheduling

Documentation

Official Release

Questions?

ESxSNMP: http://code.google.com/p/esxsnmp/

Email: jdugan@es.net

Follow us: http://esnetupdates.wordpress.com,

http://www.twitter.com/esnetupdates